
Monitored Natural Attenuation (MNA):

James E. Landmeyer
U.S. Geological Survey

Assessment, Prediction, and Verification
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MNA Outline

� Background
� Assessment
� Prediction/Verification
� References
� Points of Contact
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MNA Outline

� Background
� Assessment
� Prediction/Verification
� References
� Points of Contact
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MNA is a.k.a.:

� Intrinsic bioremediation
� "Natural attenuation" (circa 1987)
� Natural bioremediation
� Bioreclamation

MNA Background
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Brief History of MNA
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1997 EPA OSWER Directive:

Natural Attenuation Processes include
"physical, biological, and chemical processes".

These are:

� Physical = dispersion (D), advection (v)
� Biological = reduction, oxidation (k)
� Chemical = sorption (S)

…Not just biological!

MNA Background
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MNA Outline

� Background
� Assessment

� Hydrogeology (Driving Forces")
� Geochemistry/Microbiology ("Resisting Forces")

� Prediction/Verification
� References
� Points of Contact



Site Assessment
Should Consider Multiple Lines of Evidence

� Redox Conditions
� Presently observed conditions

� Distribution of Daughter Products
� Record of past conditions

� Hydrologic Framework
� Prediction of future conditions

Assessment
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The efficiency of natural attenuation
depends on the balance between these forces:

� Dispersive capacity of the aquifer
� Velocity of groundwater
� Sorptive capacity of aquifer
� Rates of biodegradation

]
]

“Driving Forces”

“Resisting Forces”

How is this quantified for use at contaminated sites?

Assessment
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How can we take all of these
processes into account, simultaneously?

� To illustrate, let’s do a visual experiment:

Consider a contaminant spill that reaches the water table.
The size of the contaminant plume that eventually

develops is controlled by:

� Size of the spill (volume, source area footprint, etc.)
� Velocity of groundwater flow (v)
� Biodegradation (k)
� Sorption (S)

Assessment
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Ground-Water Flow 

Principle:

Source Area

Receptors

Dissolved-phase plume
 

Assessment

If v is large compared to s and k,
the plume will be relatively large
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Distance from Source

MCL

Receptor
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Inefficient NA =
Assessment

slow decrease of contaminants away from source area
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Ground-Water Flow 

Principle:

Source Area

Dissolved-phase plume

Receptors

Assessment

 

Conversely, if v is small relative to s and k,
the plume will be relatively small
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Efficient NA =

Distance from Source

MCL
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Assessment

rapid decrease of contaminants away from source area
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Efficient Natural Attenuation

Source

Methanogenesis
Fe(III) Reduction

O2 Reduction
DCE, VC        CO2 + Cl

PCE        TCE        DCE        VC
Reduction

Oxidation,
Cometabolism

Assessment
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Inefficient Natural Attenuation

Source

Fe(III) Reduction
Accumulation

of PCE and TCE

PCE        TCE        DCE
Reduction Oxidation

Assessment
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Next Question:

� Hydrogeologic info (D, v)
� Monitoring well installation (areally, vertically)
� Water levels, flow directions, gradients
� Flowrates (K)
� Effect of these parameters on contaminant data

interpretation

Assessment

How do you get this information (D,v)
to make a decision about MNA?



RITS Winter 2001 18

MNA Outline

� Background
� Assessment

� Hydrogeology (Driving Forces")
• Principles
• Tools

� Geochemistry/Microbiology ("Resisting Forces")
� Prediction/Verification
� References
� Points of Contact
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Effects of
Ground-Water Velocity (v) on Contaminant Transport
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Hydrogeology Principles
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Vertical Zonation of K
Should Affect Monitoring Well Design

Hydrogeology Principles
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Old Approach, Low Resolution:

� Groundwater flow direction = land topography
� More wells near the source area
� Fewer wells downgradient (nearer the receptors!)
� Wells screened across the water table
� All wells screened at same interval

Hydrogeology Principles



?

Source Area

V = iK/n

Problem:
Where is GW (and contaminants) Flowing?

Monitoring Wells

Hydrogeology Principles



Source Area

Problem:
Assume Dissolved-Phase will be Near Water Table

Monitoring Wells

Hydrogeology Principles



Result?
Monitoring Wells Often Missed the Plume (Plan View)

Monitoring Wells

Source
Area

Hydrogeology Principles



Source Area

Result?
Monitoring Wells Often Missed the Plume Vertically

Monitoring Wells

Hydrogeology Principles
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Two Navy Site Examples:

� Tank Farm C, Beaufort, SC
 (Chapelle, Landmeyer, and Bradley, 1996)

� Laurel Bay, Beaufort, SC
 (Landmeyer, Chapelle, Bradley, 1996)

Hydrogeology Principles
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GasGas
stationstation

PlumePlume

Laurel Bay Gasoline Station, MCAS Beaufort, SC
Hydrogeology Principles
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MTBE
Benzene

April 1993
Laurel Bay Gasoline Station, MCAS Beaufort, SC

Hydrogeology Principles



RITS Winter 2001 29

January 1998
Laurel Bay Gasoline Station, MCAS Beaufort, SC

Hydrogeology Principles
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M T B E

1 0 ’

No Recharge Recharge

June 1996
Laurel Bay Gasoline Station, MCAS Beaufort, SC

Hydrogeology Principles
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MNA Outline

� Background
� Assessment

� Hydrogeology ("Driving Forces")
• Principles
• Tools

• SCAPS
• Nested Wells
• Direct Push

� Geochemistry/Microbiology ("Resisting Forces")
� Prediction/Verification
� References
� Points of Contact
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Solution: Higher Resolution
Hydrogeologic Site Characterization Tools

� Direct-push (Geoprobe)
� SCAPS Rig
� Waterloo sampler
� Hydropunch samples
� Cone penetrometer
� Borehole flowmeters
� Nested monitoring wells

Goal = Near real-time sampling-interpretation
feedback

Hydrogeology Tools



Source Area

V = iK/n

Direct Push
 (SCAPS,Geoprobe)

Sample

Analyze

Direct Push

Solution: Use Near "Real-Time" Field Techniques

Monitoring Wells

Hydrogeology Tools: SCAPS



Source Area

Solution: Use Nested Wells
"The farther your groundwater flows,

the deeper your wells should go"

Hydrogeology Tools: Nested Wells
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Direct-Push Approaches:
Geoprobe falling-head slug tests - k

Ground Surface

 

Water Table

1-in. Steel Pipe

30 cm

45 cm

1/4 in. PVC Tubing
Peristaltic
Pump

Hydrogeology Tools:
Direct Push
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� Background
� Assessment

� Hydrogeology ("Driving Forces")
� Geochemistry/Microbiology ("Resisting Forces")

• Principles
• Redox
• Dissolved Hydrogen (DH) Monitoring

• Tools
� Prediction/Verification
� References
� Points of Contact

MNA Outline
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Why is
Assessing Geochemistry Important to MNA?

� Groundwater geochemistry is a record of ongoing
chemical, physical, and microbial processes

� The efficiency of monitored natural attenuation can often
be determined from groundwater chemistry information
(i.e., redox conditions)

Geochemistry/Microbiology
Principles
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What is a Redox Process?

� Electrons that are transferred in chemical or biochemical
reaction

CH2nO + O2            CO2 + e–

H2O + CO2CH2nO + O2 

Geochemistry/Microbiology
Principles: Redox
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In a Redox Reaction

� Benzene + O2            CO2  + e–

(Benzene is electron donor)

� e– + TCE            DCE + Cl–
(TCE is electron acceptor)

One compound donates an electron
and

another compound accepts an electron:

Geochemistry/Microbiology
Principles: Redox
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e–

e-donor
(organic
carbon)

e-acceptor
O2, NO3, Fe3+,
SO4

2–, CO2, (TCE)

WORK

Electron Flow

� The flow of electrons from donors to acceptors is capable
of doing work

� Microorganisms (and everybody else) uses the work done
by flowing electrons to support life functions

Geochemistry/Microbiology
Principles: Redox
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Electron
Acceptor

Biodegradation of PHs is Electron-Donating Process

� Benzene             CO2 + e– (benzene donates e–)

� 2e– + O2            2H2O (oxygen accepts e–)

Geochemistry/Microbiology
Principles: Redox
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Because the
Biodegradation of PHs is Electron-Donating Process:

� The availability of electron acceptors determines the rate
and extent of biodegradation
� Oxygen
� NO3

� Fe(III)
� Mn(IV)
� Sulfate
� CO2

� Chlorinated solvents!

Geochemistry/Microbiology
Principles: Redox
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Energy
Per

Mole
Of

Benzene
(KJ)

O2

Fe(III)

SO4 CO2

3,566

2,343

340
135

Reduction of Electron Acceptor
3.1:1 41:1 4.6:1

Electron-Accepting Process Sequence
Geochemistry/Microbiology
Principles: Redox
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Based on 42 sites

Relative Importance of Biodegradation Mechanisms

Methanogenesis: 16%
Aerobic Respiration: 3%

Denitrification: 3%

Iron (III) Reduction: 4%

Sulfate Reduction: 74%

Geochemistry/Microbiology
Principles: Redox
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Monitoring for Geochemical Indicators of MNA

Gas chromatographyFieldDissolved Hydrogen (H2)

MeterFieldEh (redox potential)

MeterFieldpH (units)

GC FIDLaboratoryDissolved Methane (CH4)

Field kit spectrophotometerFieldHydrogen sulfide (H2S)

Ion ChromatographyLaboratorySulfate (SO4)

Field kit spectrophotometerFieldDissolved ferrous iron (Fe2+)

Ion ChromatographyLaboratoryNitrite (NO2)

Ion ChromatographyLaboratoryNitrate (NO3)

Meter, field kit titrationFieldDissolved oxygen (DO)

Method of Analysis
Field or

Laboratory
Parameter

Analytical Parameter

Geochemistry/Microbiology
Principles: Redox
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Molecular
Hydrogen (H2) Drives Reductive Dechlorination

PCE

C=C
Cl

Cl

Cl

H

TCE

+  Cl–

Chloride

H2
Molecular
Hydrogen
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n
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ow
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Hydrogen Ion

C=C
Cl

Cl

Cl

Cl

Source: Gosset and Zinder, 1996

Geochemistry/Microbiology
Principles: Redox



What about Redox Processes
over space?

Hill AFB Example

Geochemistry/Microbiology
Principles: Redox
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Total BTEX and Dissolved Oxygen
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Geochemistry/Microbiology
Principles: Redox
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Total BTEX and Iron (II)
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Geochemistry/Microbiology
Principles: Redox
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Total BTEX and Sulfate
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Geochemistry/Microbiology
Principles: Redox



RITS Winter 2001 51

Total BTEX and Methane
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Geochemistry/Microbiology
Principles: Redox



What about Redox Processes
over time?

Laurel Bay Example

Francis H. Chapelle
Paul M. Bradley

and
James E. Landmeyer

Geochemistry/Microbiology
Principles: Redox
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Biodegradation Rates
Depend on Ambient Redox Conditions

Benzene Mineralization Rates
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Geochemistry/Microbiology
Principles: Redox
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M T B E

1 0 ’

No Recharge Recharge

June 1996
Laurel Bay Gasoline Station, MCAS Beaufort, SC

Geochemistry/Microbiology
Principles: Redox
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Early (1994) Depletion of Oxygen

March 1994
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Geochemistry/Microbiology
Principles: Redox
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By 1996,
the Anoxic Zone had Expanded Downgradient
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Geochemistry/Microbiology
Principles: Redox
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By 1996, Methane Production Had Been Initiated
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Geochemistry/Microbiology
Principles: Redox
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By 1998, Methane was Present Throughout the Plume
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Geochemistry/Microbiology
Principles: Redox
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H2 Concentrations, 2000
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Geochemistry/Microbiology
Principles: Redox
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Why Have Redox Conditions Changed so Rapidly?

1994

Concrete-
Lined Ditch

21

Clay

Water Table

Fe(III)
Reduction

Methanogenesis Sulfate
Reduction

Concrete-
Lined Ditch

21

Clay

Fe(III) Reduction Oxygen Reduction

Water Table

1998

Geochemistry/Microbiology
Principles: Redox
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Extractable Fe(III)
2D Graph 1

Extractable Fe(III) (µM/gm)

Bemidji Data (Tuccillo, Cozzarelli, and Herman, 1999)

0 5 10 15 20 25 30 35 40 45

Bemidji (n=5)

Freshwater

Laurel Bay, inside plume (n=8)

Laurel Bay, outside plume (n=4)

Geochemistry/Microbiology
Principles: Redox



Conclusions

� Redox Conditions Have Changed Rapidly at the Laurel
Bay Site

� The Rapid Nature of the Redox Changes Reflects the
Relative Lack of Fe(III) in Laurel Bay Sediments

Geochemistry/Microbiology
Principles: Redox
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� Background
� Assessment

� Hydrogeology ("Driving Forces")
� Geochemistry/Microbiology ("Resisting Forces")

• Principles
• Redox
• Dissolved Hydrogen (DH) Monitoring

• Tools
� Prediction/Verification
� References
� Points of Contact

MNA Outline
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 Steady-State Hydrogen
Concentrations Reflect Redox Processes

>5.0Methanogenesis

1.0 – 4.0Sulfate Reduction

0.2 – 0.8Fe(III) Reduction

0.1Denitrification

Characteristic
Hydrogen

Concentration (nM)

Terminal Electron-
Accepting Process

Geochemistry/Microbiology
Principles: DH
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Molecular
Hydrogen (H2) Drives Reductive Dechlorination

PCE
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Molecular
Hydrogen

El
ec

tro
n

Fl
ow

e–

H+
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Source: Gosset and Zinder, 1996

Geochemistry/Microbiology
Principles: DH
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Concentrations of Stages of Chlorinated Ethenes
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Geochemistry/Microbiology
Principles
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So it Becomes Very Important to:

� Distinguish Oxidizing from Reducing Environments
� In Reducing Environments, to distinguish between:

� Methanogenesis
� Sulfate reduction
� Fe(III) reduction
� Nitrate reduction

Geochemistry/Microbiology
Principles
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� Background
� Assessment

� Hydrogeology ("Driving Forces")
� Geochemistry/Microbiology ("Resisting Forces")

• Principles
• Tools

• Laboratory Methods
• Contaminant Loss
• Radiotracer
• Bioavailable Iron Assay

• Field Methods
� Prediction/Verification
� References
� Points of Contact

MNA Outline
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Development of a
DH Analyzer and a Bioavailable Ferric Iron Assay

� Demonstrate correlation between bubble strip method and DH
analyzer

� Validate the bioavailable Fe(III) assay using
� Redox characterization
� Precipitants mineral characterization
� Assessment of site data

� Quantify costs of each technology

PROJECT NUMBER 200009
Carmen A. Lebron/NFESC

Dr. Patrick Evans/Camp Dresser & McKee Inc.

Goals:

Geochemistry/Microbiology
Tools
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 kSterile Control

kContaminant
kbio=  

Time

kContaminant - kSterile Control

Contaminant Loss Over Time, Microcosm Study
Geochemistry/Microbiology
Laboratory Tools
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Limitations of Contaminant-Loss Approach:

� Often have to go on for long periods of time (up to a year),
and in that time, the microbiology of the microcosm can
change

� Are very expensive to do
� Results depend heavily on the skill of the investigator

Geochemistry/Microbiology
Laboratory Tools
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Radiotracer Approach

�  14C-Benzene             14CO2
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Geochemistry/Microbiology
Laboratory Tools
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Limitations of Radiotracer Approach

� Results depend upon accurate matching of experimental
to ambient electron-accepting conditions

� Results depend on skill of investigator

Geochemistry/Microbiology
Laboratory Tools
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CDM

Bioavailable Ferric Iron Assay
Geochemistry/Microbiology
Laboratory Tools
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Bioavailable Fe(III) Assay Protocol
HCL10g Soil Dl Water

Bioassay
Reagent

Measure
Final Fe(II)

Dl Water
HCL

Incubate
4 weeks

Measure
Fe(II)

10g Soil

Geochemistry/Microbiology
Laboratory Tools
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• Field kit
• Like Hach kit

• Requires treatability laboratory
• Requires specialized training
• HCl extraction unacceptable

Implications

$ 50$1,000 (assuming 10 samples)Cost/sample

$100$0 if laboratory is availableCapital Cost

Bioavailable
Fe(III) Assay

Microcosm Research (Standard
Assay Not Avail.)Method

Cost Comparison: Bioavailable Fe(III) Analysis
Geochemistry/Microbiology
Laboratory Tools
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� Background
� Assessment

� Hydrogeology ("Driving Forces")
� Geochemistry/Microbiology ("Resisting Forces")

• Principles
• Tools

• Laboratory Methods
• Field Methods

� Prediction/Verification
� References
� Points of Contact

MNA Outline

� Redox
� Equilibrium Approach
� Kinetic Approach

� Hydrogen
� Bubble Stripping
� Hydrogen Analyzer
� Dispersion Model
� Conservative Tracer Model
� Flux Model
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Methods for
Evaluating Redox Processes in GW Systems

Equilibrium Approach:
� Based on Thermodynamic Equilibrium

� Eh Measurements

Kinetic Approach:
� Based on Microbial Physiology

� Identify Predominant Microbial Electron-Accepting Processes
� Hydrogen Measurements

Geochemistry/Microbiology
Field Tools: Redox
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Equilibrium Approach (becoming out of date)

� Platinum Electrode Eh Measurements
� Measure Concentrations of Redox Couples
� > 0 = "oxidizing"
� < 0 = "reducing"

Geochemistry/Microbiology
Field Tools: Redox
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Kinetic Approach (more generally useful)

� Measure Concentration Changes of Electron Acceptors
� Measure Concentration Changes of Final Products
� Measure Concentrations of Transient Intermediate

Products (Hydrogen)

Geochemistry/Microbiology
Field Tools: Redox
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Identifying Redox Processes
Plattsburg AFB: Eh
� Using: Equilibrium Approach

Geochemistry/Microbiology
Field Tools: Redox
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Equilibrium Approach
Indicates that Fe(III) Reduction Predominates:

Plattsburg AFB � Poor efficiency for Reductive Dechlorination
� Good efficiency for VC oxidation
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Geochemistry/Microbiology
Field Tools: Redox
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Identifying Redox Processes

Plattsburg AFB
� Using: Kinetic

Approach

El
ev

at
io

n 
(ft

 a
m

sl
)

200

240

280

Distance Along Flowpath (ft)
0 2000 4000

Free
Product

1.0
2.03.0

DO (mg/L)

El
ev

at
io

n 
(ft

 a
m

sl
)

200

240

280

Free
Product

102 6

Fe(II) (mg/L)

Geochemistry/Microbiology
Field Tools: Redox

Fe(II) and DO Concentrations
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Identifying Redox Processes

Plattsburg AFB
� Using: Kinetic Approach
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Geochemistry/Microbiology
Field Tools: Redox
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Identifying Redox Processes

Plattsburg AFB
� Using: Kinetic Approach
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Geochemistry/Microbiology
Field Tools: Redox
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Identifying Redox Processes

Plattsburg AFB
� Using: Kinetic Approach
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Field Tools: Redox
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Identifying Redox Processes

Plattsburg AFB
� Using: Kinetic

Approach
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Field Tools: Redox

TCE and VC Concentrations

100
25,000

100
1000

500



RITS Winter 2001 88

How Redox Conditions Affect NA at Plattsburgh AFB

� Methanogenic conditions at contaminant source produces
DCE and VC

� Fe(III)-reducing conditions in plume oxidizes VC

Geochemistry/Microbiology
Field Tools: Redox
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Redox Conclusions

� The Equilibrium Approach did not accurately characterize
the redox chemistry at this site

� The Kinetic Approach accurately identified discrete
methanogenic, sulfate-reducing, and Fe(III)-reducing
zones

� The sequential methanogenic-Fe(III)-reducing conditions
lead to efficient natural attenuation

Geochemistry/Microbiology
Field Tools: Redox
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 When Hydrogen Analyses are Useful

� Already showed example of hydrogen at Laurel Bay, but
usefulness at PH-contaminated site is limited

� Some chlorinated solvents plumes are being attenuated
without the appearance of transformation products

� Some indicators are mobile!

Geochemistry/Microbiology
Field Tools: Hydrogen
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Bubble Stripping Setup

Geochemistry/Microbiology
Field Tools: Hydrogen
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Bubble Stripping Results
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Hydrogen concentration in water 41 nMolar
Water flowrate 300 mL/minute
Bubble  volume 20 mL
Bulb volume 250 mL

Geochemistry/Microbiology
Field Tools: Hydrogen



RITS Winter 2001 93

Dissolved Hydrogen Analyzer
Geochemistry/Microbiology
Field Tools: Hydrogen Analyzer



RITS Winter 2001 94

Cost Comparison: DH Analysis

• Makes
sampling
independent of
user

• Field analysis

• Requires specialized training
• Faulty sampling methodology can yield

misinterpretation of data
• Option is to sample and send gas to fixed lab
• Off-site analysis does not allow for QA/QC of

sampling method

Implications

$20$100 (Microseeps fee)Cost/sample

$5,000$30,000 (Trace RGA)Capital Cost

DH Analyzer
On-Site Bubble Strip

with Reduction Gas Analyzer
Method

Geochemistry/Microbiology
Field Tools: Hydrogen Analyzer
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Dispersion Model Approach

�  Assumes D and v are known,
so that k can be determined
by curve-fitting

Geochemistry/Microbiology
Field Tools: Dispersion Model
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Conservative Tracer Approach

� Compares degrading vs. nondegrading solutes:

 k1 (chloride, trimethylbenzene, etc.)

k2

kbio = k2 - k1 

Distance from source area

Cx = Co exp(-Kt)

Geochemistry/Microbiology
Field Tools: Conservative Tracer
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How do these Field vs. Lab Methods Compare?

Field methods
� Poor characterization of the plume
� Hydrologic variability

Laboratory methods
� Investigator-skill bias
� Improper matching of field to lab conditions

Geochemistry/Microbiology
Tools

Clearly, any biodegradation rate measurements are
order-of-magnitude estimates, because:
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Geochemistry/Microbiology
Tools
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Potential Shortcomings of Both Models

Radiotracer Approach vs. Dispersion Model
� Need to know GW flowpath
� GW wells need to be along that flowpath
� Flowpath needs to remain fixed in space and time
� Steady-state conditions
� Presence of conservative tracer

Geochemistry/Microbiology
Tools
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Possible
alternative approach without these constraints:

Geochemistry/Microbiology
Field Tools: Flux Model
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Flux approach is more realistic, b/c total mass would be included

A B

Shifting GW flowpaths shifts plume centerline
Geochemistry/Microbiology
Field Tools: Flux Model
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(units of F are Mass per time, or microgram/day)

Compute rate of mass flux for each cross section

i = 1

n Fx = Fo exp (-Kt)

ln Fb = ln Fa -(K/v)D

t = D/v

Geochemistry/Microbiology
Field Tools: Flux Model
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b

a

Geochemistry/Microbiology
Field Tools: Flux Model
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Keyport
NUWC

SeattleStudy Area, Keyport, WA

Liberty
Bay

Dogfish
Bay

Tacoma

Geochemistry/Microbiology Field Tools
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Dogfish Bay

Landfill

Sept. 1996

April 1997

March 1998

Chlorinated VOC Plume

42,000 ppb

2,200 ppb

1 ppb

Geochemistry/Microbiology
Field Tools
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Dogfish Bay

Landfill

TCE and cis-DCE
42,000 ppb

VC Only
1 ppb

Field Evidence (VOCs) for Biodegradation

Mostly cis-DCE
2,200 ppb

Geochemistry/Microbiology
Field Tools
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Fe(III)/Mn(IV)
Reducing

Aerobic or
Fe(III)/Mn(IV)

Reducing

Dogfish Bay

Reductive
Dechlorination

Distribution of Redox Processes

Sulfate
Reducing

Oxidation

Geochemistry/Microbiology
Field Tools
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Monitor well
Intermediate
aquifer

Tidal
Lagoon

Intermediate Aquifer

Dogfish Bay

Landfill

Geochemistry/Microbiology
Field Tools
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Dogfish Bay

Landfill

Intermediate aquifer
VC = –0.003
cis-DCE = –0.0035
TCE = –0.002
PCE = none

Shallow aquifer
VC = +0.000005
cis-DCE = –0.0003
TCE = –0.002
PCE = –0.006

Fe(III)/Mn(IV)
Reducing

Aerobic or
Fe(III)/Mn(IV)

Reducing

Sulfate
Reducing

September 1996 Biodegradation Rates (d-1)
Geochemistry/Microbiology
Field Tools
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Dogfish Bay

Intermediate aquifer
VC = –0.0032
cis-DCE = –0.0035
TCE = –0.0027
PCE = none

Shallow aquifer
VC = +0.001
cis-DCE = +0.0006
TCE = –0.0012
PCE = –0.0064

Fe(III)/Mn(IV)
Reducing

Aerobic or
Fe(III)/Mn(IV)

Reducing

Sulfate
Reducing

April 1997 Biodegradation Rates (d-1)

Landfill

Geochemistry/Microbiology
Field Tools
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Dogfish Bay

Intermediate aquifer
VC = –0.0036
cis-DCE = –0.005
TCE = –0.007
PCE = none

Shallow aquifer
VC = –0.0008
cis-DCE = –0.0015
TCE = –0.0037
PCE = –0.005

Fe(III)/Mn(IV)
Reducing

Aerobic or
Fe(III)/Mn(IV)

Reducing

Sulfate
Reducing

March 1998 Biodegradation Rates (d-1)

Landfill

Geochemistry/Microbiology
Field Tools
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Half-Lives (ln2/bio. rate): Intermediate Aquifer

� TCE (ln2/-0.0041) 0.46 years

� cis-DCE (ln2/-0.004) 0.47 years

� trans-DCE (ln2/-0.0044) 0.43 years

� 1,1-DCE (ln2/-0.0063) 0.30 years

� VC (ln2/-0.0032) 0.59 years

Geochemistry/Microbiology
Field Tools
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MNA Outline

� Background
� Assessment
� Prediction/Verification

� "Natural Attenuation Capacity" Method
� References
� Points of Contact



RITS Winter 2001 114

Dispersion Model Approach

�  Assumes D and v are known,
so that k can be determined
by curve-fitting
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Prediction/Verification
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Numerical Solutions to GW Flow/ST Equation:

� BIOPLUME (1,2,3, Son of Bioplume, etc.)
� BIOSCREEN
� MODFLOW
� SUTRA
� MT3D
� Assimilative Capacity (MNA) Screening Tool Spreadsheet

Geochemistry/Microbiology
Field Tools
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MNA Outline

� Background
� Assessment
� Prediction/Verification
� References
� Points of Contact
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MNA Outline

� Background
� Assessment
� Prediction/Verification
� References
� Points of Contact
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MNA Points of Contact

� Jim Landmeyer, USGS, Columbia, SC
� E-mail: jlandmey@usgs.gov
� Phone: (803) 750-6128

� Carmen Lebron, NFESC ESC411, Port Hueneme, CA
� E-mail: lebronca@nfesc.navy.mil
� Phone: (805) 982-1616


